If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+91x-9=x
We move all terms to the left:
13x^2+91x-9-(x)=0
We add all the numbers together, and all the variables
13x^2+90x-9=0
a = 13; b = 90; c = -9;
Δ = b2-4ac
Δ = 902-4·13·(-9)
Δ = 8568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8568}=\sqrt{36*238}=\sqrt{36}*\sqrt{238}=6\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-6\sqrt{238}}{2*13}=\frac{-90-6\sqrt{238}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+6\sqrt{238}}{2*13}=\frac{-90+6\sqrt{238}}{26} $
| 2(3r-4)=-(-6r) | | 10-2(2a+1)=7a-3 | | 5(2x-7)+6(5-x)=18 | | a=5(19-10)/7(6)+3+9 | | 102=-2+2(4-8n) | | Q=4/5p+10 | | 10-5(2a+1)=7a-3 | | 4x-23=9x+27 | | -25+5m=-6(1-4m) | | (b+6)-4=10 | | 32=4(x+5)-8x | | a=6(11-4)/5(2)+4+10 | | 3x^2+60x+23=0 | | 3/4t+7/8t=26 | | x-40+2x+x-20=180 | | 3x^2+60+23=0 | | -29=-8y+3(y-8) | | -7+3p=-9p+17 | | 1/2x-1/6=13 | | b/9-3=4 | | 75=m/(-5)+25 | | 6/5u+5/8=-4/5u+5/4 | | b/5-5=9 | | P=4/5q+10 | | 5/2(3x+7)+1=2(10-x | | b/5–5=9 | | 7=z=-9 | | 1/4*x=6 | | -3x-1=5x+3 | | 5(v+4)=-9v-8 | | -4(11n-4)+8(9-4n)=-64 | | 8(-7v-8)=-512 |